

Using artificial intelligence in string performance and teaching

Dr. Kristen Yeon-Ji Yun

Cellist

Clinical Associate Professor

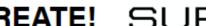
Purdue University

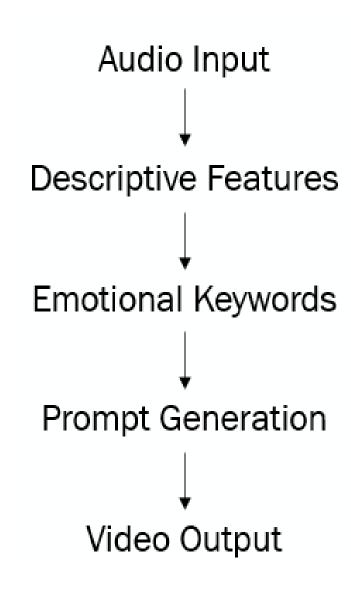
1. MUS2VID

 Real-Time Image Generation by Al in concert

 Al analyzes musical features and the trained Al models will generate relevant images during performance.

Performance



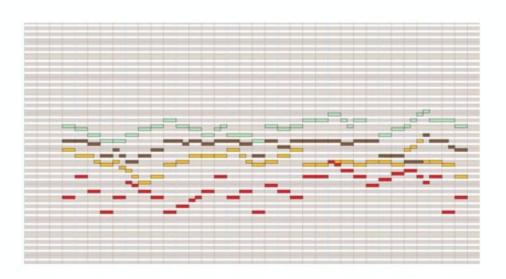


- 1. Music is analyzed and classified into multiple dimensions, such as instrumentation, emotion, tempo, number of musicians, pitch range, harmony, dynamic, etc.
- 2. The feature matrix becomes input to two machine learning models: a classification neural network and a support vector machine.
- 3. These models predict the genre of the input audio and theemotions, respectively. These predictions form the bas is for text prompts that describe the music.
- 4. The descriptions enter generative machine models (e.g., Stable Diffusion) in order to create visual representations.
- 5. The visual representations are updated as the music is performed.

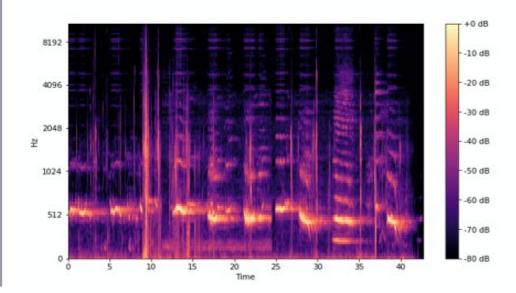


Feature Extraction

- Piano rolls represent the timing, duration, and pitch of all notes played throughout a song
- This format doesn't capture timbre or dynamics



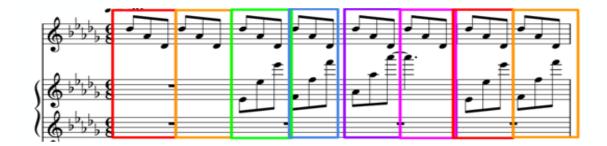
- Spectrograms represent music visually with frequency, time, and intensity.
- Captures a wider range of features but less precise with notes



Feature Extraction and Chord Detection



- Notes played within a window of time are assigned a prominence based on duration, length, octave etc.
- Most prominent notes are used to predict the chord being played
- Popular chords throughout a song can predict the key

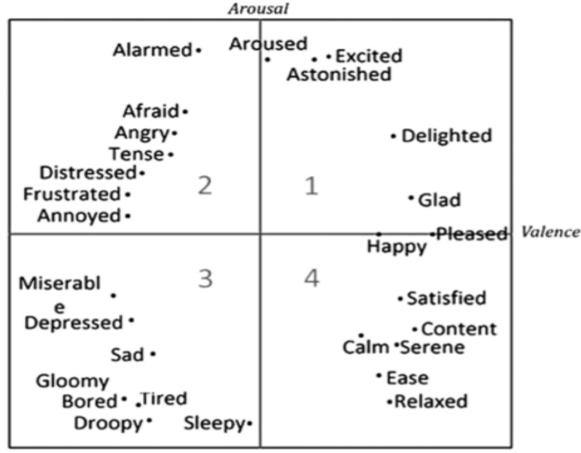


Music and Emotion

Emotion	Tempo	Volume/	Rhythm	Pitch	Harmony	Common
	_	Dynamics	-	Range	-	Features
Happiness	Fast,	Medium-	Regular	High,	Consonant	Perfect 4 th
	consistent	high,		wide		and 5 th ,
		small				staccato,
		variability				trills
Sadness	Slow,	Low,	Firm	Narrow	Dissonant	Ritardando,
	consistent	small				legato,
		variability				minor 2 nd
Anger	Fast,	High,	Complex	High,	Dissonant	Staccato,
	consistent	small		narrow		accents on
		variability				dissonant
						notes
Fear/	Fast,	Large	Irregular,	Wide	Dissonant	Staccato,
Stress	variable	variability	varied			pauses,
Tenderness/	Slow	Medium-	Little	Narrow	Consonant	Legato,
Serenity		low, low	variability			accents on
		variability				consonant
						notes

- Some features are often connected to specific emotions (i.e., major keys often convey positive emotions)
- Musical pieces establish expectations
- Reinforcing or defying expectations lowers/increases tension (arousal/ intensity of the emotion)

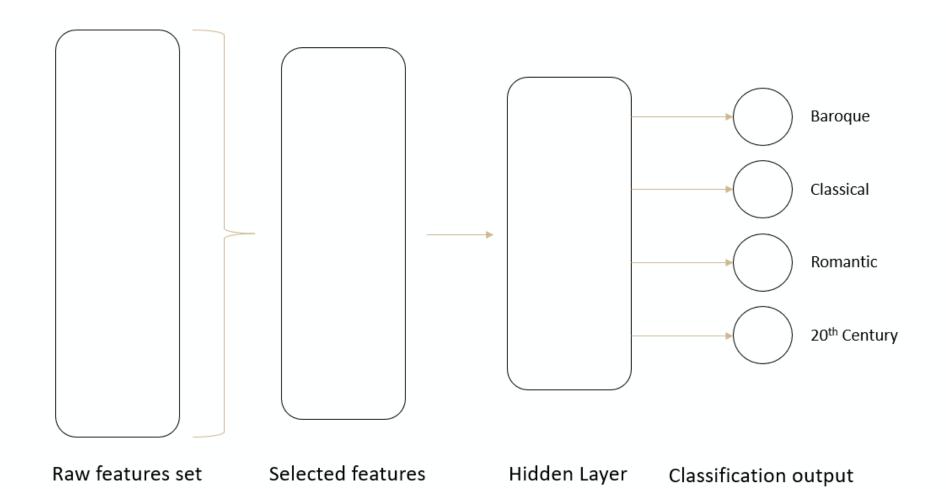
Emotional Prediction

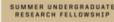


- Emotions are described on axes of valence and arousal, with values from 1 to 9 for each
- We predict valence and arousal for new audio clips using a machine learning model trained on a dataset of songs with emotional labels

Russel's circumplex model of emotion [1]

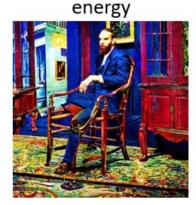
Genre Classification





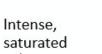
Emotional language to Art

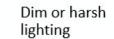
Excitement, happiness,



Anger, fear, intensity

- Warm colors
- Bright, vibrant lighting





colors

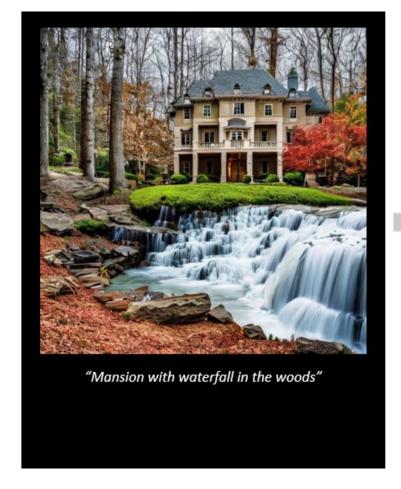
Calmness, serenity, relaxation

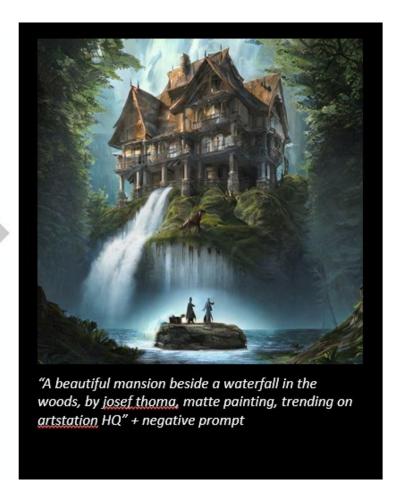
Sadness, tranquility, melancholy

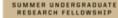
Pastel shades, light blues and greens Soft, diffuse lighting

- Cool, muted colors
- Soft or dim lighting

Stable Diffusion and Prompt Engineering







Prompt Generation

[Musical Period] [Artist(s)] [Lighting] [Colors] [Perspective] [Style]

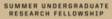
Genre = "Romantic" Emotion = "Relaxed"

Romantic classical music in the style of Claude Monet,

soft lighting, low intensity, neutral and earthy tones,

Wide shot, matte painting Randomly Selected

Concert Video



Future Work

- Improving accuracy of models with larger datasets and new features
- Using frame interpolation to increase animation quality
- Direct connections between music and visuals without creating text prompts in between
 - Training a model like Stable Diffusion on a set of images with audio "captions"

Broad Impact

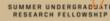
- As audiences can enjoy informatic and artistic images throughout concerts, this technology can help outreach to broader audiences, and improve presentation, education, and promotion of any concert program.
- Younger generations can approach to Classical music better in concert with this technology.
- It can also be used to help hearing impair people to appreciate music through visual images.

2. Evaluator and Companion

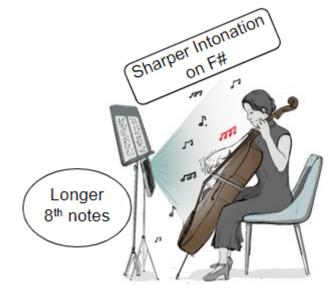
Two tools which can help musicians' practice in solo and/or ensemble

A grant received from National Science Foundation (Artificial Intelligence Technology for Future Music Performers. Award number: 2326198) announced last month https://www.nsf.gov/awardsearch/showAward?AWD ID=2326198

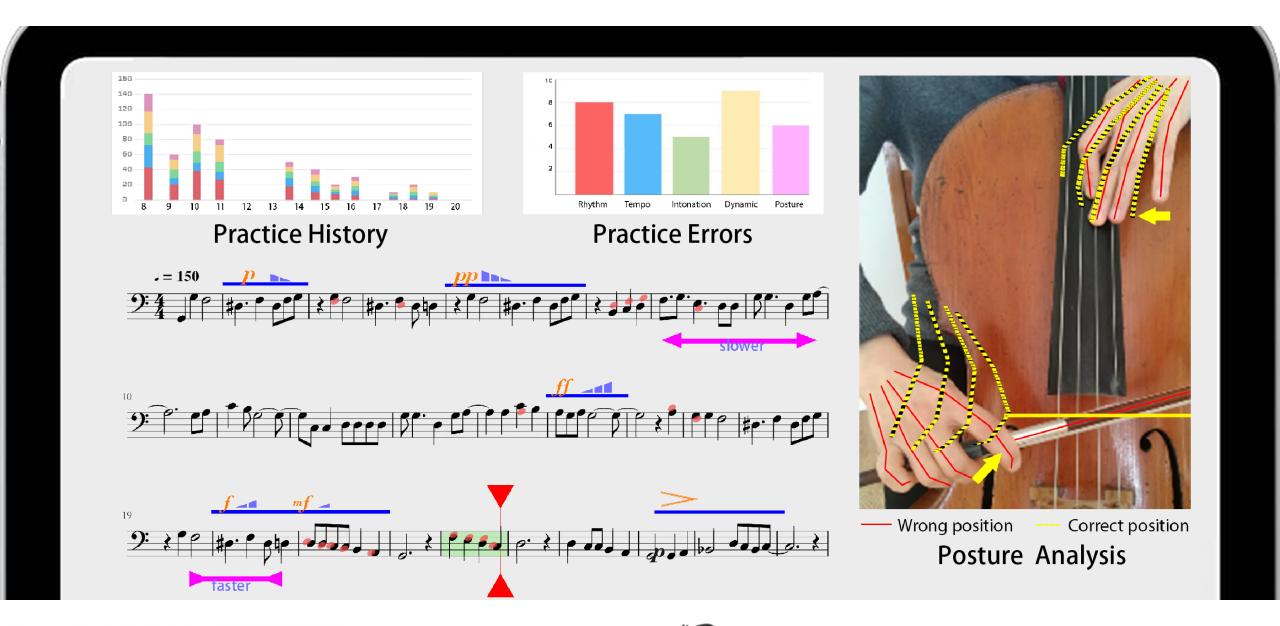
What are the everyday challenges for musicians?



1) Evaluator



- aims to improve individual practice and performance
- analyzes a musician's sound and compares it to digitized music scores to detect deviations in intonation, rhythm, and dynamics
- computer vision is used to detect incorrect postures.



2) Companion

- plays the part of one or several instruments to replace absent musicians
- It can match tempo, and style of the human musicians
- also responds in real-time to verbal instructions.

VIP (Vertically Integrated Project)

- Undergraduate research team with various background
- Some grad-students will join from next semester.

Technology

- computer vision
- natural language processing
- audio analysis
- transformer

Evaluation

- user studies
- surveys
- focus groups
- longitudinal deployments.

Who are involved in this research?

PI: Kristen Yeon Ji Yun (<u>yun98@purdue.edu</u>)
Music

- Cheryl Zhen Yu Qian (<u>qianz@purdue.edu</u>)
 Art & Design
- Victor Yingjie Chen (<u>victorchen@purdue.edu</u>)
 Computer Graphics Technology
- Yung-Hsiang Lu (<u>yunglu@purdue.edu</u>), Electrical and Computer Engineering
- Mohammad Saifur Rahman (<u>mrahman@purdu.edu</u>)
 School of Management

Ka-Wai Yu (<u>ka-wai.yu@utahtech.edu</u>)
 Music at Utah Tech University

References

• [1] R. Panda, R. Malheiro, and R. P. Paiva, "Novel Audio Features for Music Emotion Recognition," *IEEE Transactions on Affective Computing*, vol. 11, no. 4, pp. 614–626, Oct. 2020, doi: 10.1109/TAFFC.2018.2820691.

Survey for musicians

